Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

نویسندگان

  • Haitham T. Hussein
  • Abdulhadi Kadhim
  • Ahmed A. Al-Amiery
  • Abdul Amir H. Kadhum
  • Abu Bakar Mohamad
چکیده

Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing

In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...

متن کامل

Production of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing

In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...

متن کامل

Enhancing Wear Resistance of Squeeze Cast AC2A Aluminum Alloy

The effect of squeeze casting process parameters on wear behavior of AC2A aluminium alloy was primarily investigated in this experimental study. Five process parameters, namely squeeze pressure, pouring temperature, die temperature, die material and compression time, each at four levels were chosen and sixteen experimental runs based on L16 orthogonal array were performed. From analysis of vari...

متن کامل

Effect of Multipath Laser Shock Processing on Microhardness, Surface Roughness, and Wear Resistance of 2024-T3 Al Alloy

Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sud...

متن کامل

Effect of Repeated Repair Metal Inert Gas Welding on Microstructural Properties, Corrosion Resistance, and Wear Behavior of 5083-H116 Aluminum Alloy

The effect of repeated repair welding, shielded with argon, on microstructural properties, corrosion resistance, and dry sliding wear behavior of aluminum alloy 5083/H116 were investigated. Samples were welded by metal inert gas welding method. 100% argon was used to protect fusion zone. Aluminum alloy 5356 was used as the filler metal. The samples for microstructure, corrosion, and wear tests ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014